- · 模式识别与人工智能版面[04/29]
- · 《模式识别与人工智能》[04/29]
- · 《模式识别与人工智能》[04/29]
- · 《模式识别与人工智能》[04/29]
Python开发需要学习什么?
作者:网站采编关键词:
摘要:想自学python的话,除了学习一些基础理论知识,还需要掌握一些经典机器学习理论和算法,那么开发需要学习哪些经典的机器学习理论和算法呢?下面是小编整理的几点,希望能够帮助
想自学python的话,除了学习一些基础理论知识,还需要掌握一些经典机器学习理论和算法,那么开发需要学习哪些经典的机器学习理论和算法呢?下面是小编整理的几点,希望能够帮助到大家。

第一、学习一些基础理论知识
高等数学是学习Python开发的基础,数据挖掘、模式识别、人工智能智能等都是需要用到很多的微积分元素来预算的。以及优化理论和算法。
第二、掌握好经典的机器学习理论和算法
(1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression)等。
(2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ)等。
(3) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5等。
(4) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络等。
(5) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF)等。
Python核心编程——Python语言基本介绍、面向对象编程、Linux操作系统、文件系统与用户管理、进程管理与服务配置、Shell编程与bash,源文件编译、版本控制、MySQL使用、MySQL进阶等。
全栈开发——HTML、CSS、JavaScript、jQuery、 BootStrap、Vue、Web开发基础、数据库操作、FLask配置、Django认识、Models、Templates、Views、Tornado框架进阶、ElasticSearch等。
网络爬虫——爬虫与数据、Scrapy框架、Scrapy框架与信息实时抓取、定时爬取与邮件监控、NoSQL数据库、Scrapy-Redis框架、百万量数据采集等。
人工智能——数据分析、pyechart模块动态可视化、词云、分类算法、聚类算法、回归类算法、关联算法、卷积神经网络、TensorFlow+PaddlePaddle、图像识别等。
文章来源:《模式识别与人工智能》 网址: http://www.mssbyrgznqks.cn/zonghexinwen/2022/0505/815.html
上一篇:机器视觉是什么
下一篇:昆明将新增1.5万个泊位无人值守系统