- · 模式识别与人工智能版面[04/29]
- · 《模式识别与人工智能》[04/29]
- · 《模式识别与人工智能》[04/29]
- · 《模式识别与人工智能》[04/29]
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。
公路与水路运输论文_基于多入侵线的视频车速检
作者:网站采编关键词:
摘要:文章摘要:为提高视频中车速检测的精度,提出一种基于多入侵线的视频车速检测方法。首先在视频中布设已知相对距离的多条入侵线,其次检测车辆经过每条入侵线时的帧数,最后结合
文章摘要:为提高视频中车速检测的精度,提出一种基于多入侵线的视频车速检测方法。首先在视频中布设已知相对距离的多条入侵线,其次检测车辆经过每条入侵线时的帧数,最后结合帧数、摄像机的采样时间、入侵线间的距离生成关于车速的概率密度函数模型以计算车速。通过构建仿真环境验证模型性能,仿真结果表明:减小摄像机的采样时间、增加入侵线数量、增大入侵线之间的距离可以提高模型性能,并且在不同检测条件下使用多入侵法进行车速检测的误差率都更低。采用Deepsort+YOLOv5目标跟踪算法实现视频中车速的检测,同时,在视频车速检测综合数据集BrnoCompSpeed上与主流车速检测方法进行实验对比,实验结果表明,该方法测量结果的平均误差率为1.40%,与主流视频车速检测方法相比精度更高。
文章关键词:
项目基金:《模式识别与人工智能》 网址: http://www.mssbyrgznqks.cn/qikandaodu/2022/0114/783.html