投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

电力工业论文_基于改进XGBoost算法的XLPE电缆

来源:模式识别与人工智能 【在线投稿】 栏目:期刊导读 时间:2022-01-13
作者:网站采编
关键词:
摘要:文章摘要:局部放电模式识别对交联聚乙烯(XLPE)电缆绝缘性能的判定具有重要意义。在XLPE电缆的局部放电模式识别的研究中,传统机器学习算法存在收敛速度慢、易过拟合、识别准确

文章摘要:局部放电模式识别对交联聚乙烯(XLPE)电缆绝缘性能的判定具有重要意义。在XLPE电缆的局部放电模式识别的研究中,传统机器学习算法存在收敛速度慢、易过拟合、识别准确率低等问题。文章采用一种基于改进XGBoost算法的XLPE电缆局部放电模式识别方法。通过搭建电缆局部放电试验平台人为构造四种35kV XLPE电缆局部放电缺陷模型进而获取原始数据,利用MATLAB软件完成统计特征参数的计算,以特征参数为输入量,放电类型预测结果为输出量,通过交叉验证、学习曲线确定最优参数进而得到有效的模式识别模型。实验分析结果表明,与决策树、随机森林、BP神经网络和SVM等局部放电模式识别方法相比,文中方法可进一步提升识别准确率,总体识别准确率为96.93%。

文章关键词:

项目基金:《模式识别与人工智能》 网址: http://www.mssbyrgznqks.cn/qikandaodu/2022/0113/782.html



上一篇:中药学论文_基于指纹图谱结合化学模式识别及多
下一篇:公路与水路运输论文_基于多入侵线的视频车速检

模式识别与人工智能投稿 | 模式识别与人工智能编辑部| 模式识别与人工智能版面费 | 模式识别与人工智能论文发表 | 模式识别与人工智能最新目录
Copyright © 2021 《模式识别与人工智能》杂志社 版权所有 Power by DedeCms
投稿电话: 投稿邮箱: